Improving Understanding of 1-Dimensional Kinematics Concepts through Motion Diagram Approach

https://doi.org/10.63081/uejtl.v2i2.38

Authors

  • Asmarani Hafid SMAN 11 Makassar
  • Hartati SMAN 11 Makassar
  • Zainuddin SMAN 11 Makassar
  • Andi Ardani Japeri Universitas Negeri Makassar

Conceptual understanding, 1-dimensional kinematics, Motion diagram approach

Abstract

Students' understanding of kinematics concepts still tends to be low because they have difficulty understanding concepts in various representations. This quantitative study investigates the effectiveness of the motion diagram approach in teaching one-dimensional kinematics through a pretest-posttest control group design. The experimental class utilized motion diagrams, while the control class was taught using conventional methods over a five-week period. The research was conducted at one of the public high schools in Makassar City. The experimental and control classes consisted of 36 students. Students' understanding was assessed using a validated set of 12 multiple-choice questions, with data analyzed through descriptive statistics and independent sample t-tests to evaluate differences in learning outcomes. Results indicated that the experimental class exhibited significantly more improvement in conceptual understanding than the control class, suggesting that motion diagrams enhance students' grasp of kinematic principles. The findings support integrating multi-representational learning strategies, facilitating students' active engagement and knowledge construction. The motion diagram approach effectively reduces cognitive load and promotes deeper understanding by visually representing motion and encouraging students to translate this information into tables, graphs, and equations. Additionally, the study highlights the importance of combining visual and verbal representations, which aligns with Dual Coding theory, enhancing retention and motivation. Overall, the research underscores the potential of innovative teaching methods, such as motion diagrams, to improve educational outcomes in physics, thereby enriching the learning experience and fostering a more profound comprehension of scientific concepts among students. In the future, similar experiments could be applied in broader contexts or in other subjects of physics, as well as the potential integration of this approach with modern technology.

References

Adams, W. K., & Wieman, C. E. (2015). Analyzing the many skills involved in solving complex physics problems. American Journal of Physics, 83(5), 459-467. https://doi.org/10.1119/1.4913923

Ainsworth, S. (1999). The functions of multiple representations. Computers & education, 33(2-3), 131-152. https://doi.org/10.1016/S0360-1315(99)00029-9

Aminuddin, M., Salman, Z., & Irawati, A. (2024). Multi-representation approach in improving 1-dimensional kinematics conceptual understanding. Universal Education Journal of Teaching and Learning, 1(2), 41-45. https://doi.org/10.63081/uejtl.v1i2.34

Arokoyu, A. A., & Aderonmu, T. S. (2018). Conceptual formation, attainment and retention of Chemistry and Physics students in real-life phenomena. International Journal of Scientific Research and Innovative Technology, 5(5), 18-34.

Baviskar, S. N., Sandhya, N., Hartle, R. T., & Whitney, T. (2009). Essential criteria to characterize constructivist teaching: Derived from a review of the literature and applied to five constructivist-teaching method articles. International Journal of Science Education, 31(4), 541-550. https://doi.org/10.1080/09500690802349251

Cao, Y., Theune, M., & Nijholt, A. (2009). Modality effects on cognitive load and performance in high-load information presentation. In Proceedings of the 14th International Conference on Intelligent User Interfaces (pp. 335-344). https://doi.org/10.1145/1502650.1502693

Cashman, A., & O’Mahony, T. (2022). Student understanding of kinematics: a qualitative assessment. European Journal of Engineering Education, 47(6), 886-909. https://doi.org/10.1080/03043797.2022.2073200

Chen, G., & Fu, X. (2003). Effects of multimodal information on learning performance and judgment of learning. Journal of Educational Computing Research, 29(3), 349-362. https://doi.org/10.2190/1R3H-HM0K-0V62-0V43

Clark, J. M., & Paivio, A. (1987). A dual coding perspective on encoding processes. In Imagery and Related Mnemonic Processes: Theories, Individual Differences, and Applications (pp. 5-33). Springer New York. https://doi.org/10.1007/978-1-4612-4631-7_1

Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073-1091. https://doi.org/10.1002/sce.20199

Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics-Physics Education Research, 10(2), 020119. https://doi.org/10.1103/PhysRevSTPER.10.020119

Firmansyah, D., Taqwa, M. R. A., Setiyani, A., & Ramadani, C. I. (2023). Analysis of College Students’ Conceptual Understanding on Work and Energy Topic in Various Representations. Jurnal Pendidikan Fisika dan Teknologi, 9(2), 306-314. https://doi.org/10.29303/jpft.v9i2.4760

Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American journal of physics, 53(11), 1056-1065. https://doi.org/10.1119/1.14031

Harlow, D.B., & Bianchini, J.A. (2025). Knowledge-in-Pieces—Andrea A. diSessa, David Hammer. In: Akpan, B., Kennedy, T.J. (eds) Science Education in Theory and Practice. Springer Texts in Education. Springer, Cham. https://doi.org/10.1007/978-3-031-81351-1_22

Hegde, B., & Meera, B. N. (2012). How do they solve it? An insight into the learner’s approach to the mechanism of physics problem solving. Physical Review Special Topics—Physics Education Research, 8(1), 010109. https://doi.org/10.1103/PhysRevSTPER.8.010109

Kikas, E. (2003). University students' conceptions of different physical phenomena. Journal of adult development, 10, 139-150. https://doi.org/10.1023/A:1023410212892

Klingner, J., Tversky, B., & Hanrahan, P. (2011). Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks. Psychophysiology, 48(3), 323-332. https://doi.org/10.1111/j.1469-8986.2010.01113.x

Körhasan, N. D., & Kaltakci-Gurel, D. (2019). Student teachers’ physics knowledge and sources of knowledge to explain everyday phenomena. Science Education International, 30(4), 298-309. https://doi.org/10.33828/sei.v30.i4.7

Leahy, W., & Sweller, J. (2011). Cognitive load theory, modality of presentation and the transient information effect. Applied Cognitive Psychology, 25(6), 943-951. https://doi.org/10.1002/acp.1779

Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87(2), 319-334. https://doi.org/10.1037/0022-0663.87.2.319

Mualem, R., & Eylon, B. S. (2007). “Physics with a smile”—Explaining phenomena with a qualitative problem-solving strategy. The Physics Teacher, 45(3), 158-163. https://doi.org/10.1119/1.2709674

Ogundeji, O. M., Madu, B. C., & Onuya, C. C. (2019). Scientific Explanation of Phenomena and Concept Formation as Correlates of Students' Understanding of Physics Concepts. European Journal of Physics Education, 10(3), 10-19. https://eric.ed.gov/?id=EJ1299975

Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 45(3), 255-287. https://doi.org/10.1037/h0084391

Paivio, A. (2014). Intelligence, dual coding theory, and the brain. Intelligence, 47, 141-158. https://doi.org/10.1016/j.intell.2014.04.006

Paivio, A., & Clark, J. M. (2006). Dual coding theory and education. Pathways to Literacy Achievement for High Poverty Children, 1, 149-210.

Rivaldo, L., Taqwa, M. R. A., & Faizah, R. (2019). Identifikasi Pemahaman Konsep Usaha dan Energi Calon Guru Fisika. Jurnal Pendidikan Sains Universitas Muhammadiyah Semarang, 7(2), 157-163. https://doi.org/10.26714/jps.7.2.2019.157-163

Romansyah, T. A., & Taqwa, M. R. A. (2021). Konsistensi representasi dalam menyelesaikan kasus jarak tempuh. Radiasi: Jurnal Berkala Pendidikan Fisika, 14(2), 87-98. https://doi.org/10.37729/radiasi.v14i2.1143

Rosenquist, M. L., & McDermott, L. C. (1987). A conceptual approach to teaching kinematics. American Journal of Physics, 55(5), 407-415. https://doi.org/10.1119/1.15122

Ryan, Q. X., Frodermann, E., Heller, K., Hsu, L., & Mason, A. (2016). Computer problem-solving coaches for introductory physics: Design and usability studies. Physical Review Physics Education Research, 12(1), 010105. https://doi.org/10.1103/PhysRevPhysEducRes.12.010105

Sadoski, M., & Paivio, A. (2004). A dual coding theoretical model of reading. In Theoretical Models and Processes of Reading (5th ed., pp. 1329-1362). International Reading Association.

Sajadi, M., Amiripour, P., & Rostamy-Malkhalifeh, M. (2013). The examining mathematical word problems solving ability under efficient representation aspect. Mathematics Education Trends and Research, 2013(1), 1-11. https://doi.org/10.5899/2013/metr-00007

Schank, R. C., & Abelson, R. (1995). Knowledge and memory: The real story. In Knowledge and Memory: The Real Story, ed Wyer RS.

Shodiqin, M. I., & Taqwa, M. R. A. (2021, June). Identification of student difficulties in understanding kinematics: focus of study on the topic of acceleration. In Journal of Physics: Conference Series (Vol. 1918, No. 2, p. 022016). IOP Publishing. https://doi.org/10.1088/1742-6596/1918/2/022016

Susanti, S. D., Taqwa, M. R. A., & Sulur, S. (2020). Pengembangan e-module berbasis discovery learning berbantuan PhET pada materi teori kinetik gas untuk mahasiswa. Jurnal Pendidikan Fisika dan Teknologi, 6(2), 287-296. https://doi.org/10.29303/jpft.v6i2.2234

Sutopo, S. (2012). Pembelajaran kinematika berbasis diagram gerak: Cara baru dalam pengajaran kinematika. In Seminar Nasional Penelitian Universitas Negeri Yogyakarta. Yogyakarta: Universitas Negeri Yogyakarta (p. 11).

Taqwa, M. R. A., & Rivaldo, L. (2018). Kinematics Conceptual Understanding: Interpretation of Position Equations as A Function of Time. Jurnal Pendidikan Sains Universitas Negeri Malang, 6(4), 478018. https://doi.org/10.17977/jps.v6i4.11274

Taqwa, M. R. A., & Rivaldo, L. (2019). Pembelajaran problem solving terintegrasi phet: membangun pemahaman konsep listrik dinamis. Kwangsan: Jurnal Teknologi Pendidikan, 7(1), 45-56. http://dx.doi.org/10.31800/jtp.kw.v7n1.p45--56

Taqwa, M. R. A., Faizah, R., & Rivaldo, L. (2019a). Pengembangan lembar kerja mahasiswa berbasis POE dan kemampuan berpikir kritis mahasiswa pada topik fluida statis. Edufisika: Jurnal Pendidikan Fisika, 4(01), 6-13. Retrieved from https://mail.online-journal.unja.ac.id/EDP/article/view/6284

Taqwa, M. R. A., Rivaldo, L., & Faizah, R. (2019b). Problem based learning implementation to increase the students’ conceptual understanding of elasticity. Formatif: Jurnal Ilmiah Pendidikan MIPA, 9(2). http://dx.doi.org/10.30998/formatif.v9i2.3339

Taqwa, M. R. A., Priyadi, R., & Rivaldo, L. (2019c). Pemahaman konsep suhu dan kalor mahasiswa calon guru. JPF (Jurnal Pendidikan Fisika) FKIP UM Metro, 7(1), 56-67. http://dx.doi.org/10.24127/jpf.v7i1.1547

Taqwa, M. R. A., Hidayat, A., & Sutopo, S. (2017). Konsistensi pemahaman konsep kecepatan dalam berbagai representasi. Jurnal Riset dan Kajian Pendidikan Fisika, 4(1), 31-40. https://doi.org/10.12928/jrkpf.v4i1.6469

Taqwa, M. R. A., Suyudi, A., & Faizah, R. (2022). Integration of motion diagram-based module to improve students’ conceptual understanding of 1-dimensional kinematics. Journal of Physics: Conference Series, 2309(1), 012062. https://doi.org/10.1088/1742-6596/2309/1/012062

Tebabal, A., & Kahssay, G. (2011). The effects of student-centered approach in improving students' graphical interpretation skills and conceptual understanding of kinematical motion. Latin-American Journal of Physics Education, 5(2), 9. Retrieved from http://www.lajpe.org/june11/9_LAJPE_509_Ambelu_Tebabal_preprint_corr_f.pdf

Waldrip, B., Prain, V., & Sellings, P. (2013). Explaining Newton’s laws of motion: Using student reasoning through representations to develop conceptual understanding. Instructional Science, 41, 165-189. https://doi.org/10.1007/s11251-012-9223-8

Data

Downloads

Published

2025-07-03

How to Cite

Asmarani Hafid, Hartati, Zainuddin, & Andi Ardani Japeri. (2025). Improving Understanding of 1-Dimensional Kinematics Concepts through Motion Diagram Approach. Universal Education Journal of Teaching and Learning, 2(2), 60–67. https://doi.org/10.63081/uejtl.v2i2.38

Issue

Section

Research Articles