How is Artificial Intelligence (AI) Changing the Future of Computer-Based Testing (CBT)?
https://doi.org/10.63081/uejtl.v2i2.48
Artificial Intelligence, Computer-Based Testing, Automated Grading, Adaptive Testing, Algorithmic Bias
Abstract
This study examines the transformative impact of Artificial Intelligence (AI) on Computer-Based Testing (CBT) through a systematic literature review (SLR) following the PRISMA 2020 protocol. The research identifies key opportunities, including automated grading (reducing instructor workload by 70%) and adaptive testing (enhancing personalized assessments), alongside critical challenges such as algorithmic bias (particularly in speech recognition systems) and privacy concerns in AI-based proctoring. Analysis of 95 peer-reviewed studies (2015-2024) reveals a significant post-2020 surge in research, driven by digital education demands during the pandemic, with current trends focusing on Generative AI integration (25% of studies) and bias mitigation (35%). The findings highlight the need for ethical and equitable development of AI-enhanced CBT systems that prioritize both technological innovation and ethical considerations, particularly regarding fairness, transparency, and data protection. The study concludes with recommendations for future research directions, including the development of Explainable AI (XAI) frameworks and inclusive assessment models. These insights provide valuable guidance for educators, policymakers, and technology developers working to optimize AI applications in educational assessment.
References
Adadi, A. and Berrada, M. (2018) Peeking inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138-52160. https://doi.org/10.1109/ACCESS.2018.2870052
Adiyono, A., Jasiah, J., Ritonga, W., & Al-Matari, A. S. (2024). ChatGBT and active learning: A new paradigm for student participation in the classroom (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781032716350-13
Adiyono, A., Al Matari, A. S., & Dalimarta, F. F. (2025a). Analysis of Student Perceptions of the Use of ChatGPT as a Learning Media: A Case Study in Higher Education in the Era of AI-Based Education. Journal of Education and Teaching (JET), 6(2), 306-324. https://doi.org/10.51454/jet.v6i2.538
Adiyono, A., Suwartono, T., Nurhayati, S., Dalimarta, F. F., & Wijayanti, O. (2025b). Impact of artificial intelligence on student reliance for exam answers: A case study in IRCT Indonesia. International Journal of Learning, Teaching and Educational Research, 24(3), 519-544. https://doi.org/10.26803/ijlter.24.3.22
Amin, P., R, M., patel, M., & Gupta, M. V. (2024). Reliable Person Identification Using A Novel Multibiometric Image Sensor Fusion Architecture. https://doi.org/10.21203/rs.3.rs-4000398/v1
Baker, S., & Xiang, W. (2023). Explainable ai is responsible ai: How explainability creates trustworthy and socially responsible artificial intelligence. arXiv preprint arXiv:2312.01555. https://doi.org/10.48550/arXiv.2312.01555
Bernal, P. (2016). Data gathering, surveillance and human rights: recasting the debate. Journal of Cyber Policy, 1(2), 243–264. https://doi.org/10.1080/23738871.2016.1228990
Collins, C., Haase, D., Heiland, S., & Kabisch, N. (2022). Urban green space interaction and wellbeing – investigating the experience of international students in Berlin during the first COVID-19 lockdown. Urban Forestry and Urban Greening, 70. https://doi.org/10.1016/j.ufug.2022.127543
Creed, T. A., Kuo, P. B., Oziel, R., Reich, D., Thomas, M., O’Connor, S., Imel, Z. E., Hirsch, T., Narayanan, S., & Atkins, D. C. (2022). Knowledge and Attitudes Toward an Artificial Intelligence-Based Fidelity Measurement in Community Cognitive Behavioral Therapy Supervision. Administration and Policy in Mental Health and Mental Health Services Research, 49(3), 343–356. https://doi.org/10.1007/s10488-021-01167-x
EDUCAUSE. (2023). Technology Experiences and Digital Access to Course Components.
Fiok, K., Farahani, F. V., Karwowski, W., & Ahram, T. (2022). Explainable artificial intelligence for education and training. Journal of Defense Modeling and Simulation, 19(2), 133–144. https://doi.org/10.1177/15485129211028651
Gupta, L., Bharti, D., & Taneja, S. (2025). Large language models in anaesthesiology: Current insights and future directions: A narrative review. In Indian Journal of Clinical Anaesthesia (Vol. 12, Issue 2, pp. 190–197). IP Innovative Publication Pvt. Ltd. https://doi.org/10.18231/j.ijca.2025.033
Halkiopoulos, C., & Gkintoni, E. (2024). Leveraging AI in E-Learning: Personalized Learning and Adaptive Assessment through Cognitive Neuropsychology—A Systematic Analysis. In Electronics (Switzerland) (Vol. 13, Issue 18). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/electronics13183762
Hasan, A., Brown, S., Davidovic, J., Lange, B., & Regan, M. (2022). Algorithmic Bias and Risk Assessments: Lessons from Practice. 1–23.
Hayat, E. W., & Adiyono, A. (2025). Innovative Strategies for Developing Competency-Based Learning Evaluation in Madrasah Ibtidaiyah Under The Independent Curriculum. Journal of Elementary Education Research and Practice, 1(1), 49-62. https://doi.org/10.70376/h7egb189
Hoepman, J.-H. (2020). A Critique of the Google Apple Exposure Notification (GAEN) Framework. http://arxiv.org/abs/2012.05097
Human, S., & Cech, F. (2020). Human-centric Perspective on Digital Consenting: The Case of GAFAM Conference or Workshop Item (Accepted for Publication) (Refereed) A Human-centric Perspective on Digital Consenting: The Case of GAFAM. In Human Centred Intelligent Systems (Vol. 2020).
IBM. (2023, June 29). IBM AI Education: Transforming the classroom with AI. IBM. https://mediacenter.ibm.com/media/IBM%2BAI%2BEducation/1_frksa038
Isbell, D. R., Kremmel, B., & Kim, J. (2023). Remote Proctoring in Language Testing: Implications for Fairness and Justice. Language Assessment Quarterly, 20(4–5), 469–487. https://doi.org/10.1080/15434303.2023.2288251
Kurdi, G., Leo, J., Matentzoglu, N., Parsia, B., Sattler, U., Forge, S., Donato, G., Dowling, W., & Gromann, D. (2021). A comparative study of methods for a priori prediction of MCQ difficulty. Semantic Web, 12(3), 449–465. https://doi.org/10.3233/SW-200390
Lai, L. F., & Holliday, N. (2023). Exploring Sources of Racial Bias in Automatic Speech Recognition through the Lens of Rhythmic Variation. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2023-August, 1284–1288. https://doi.org/10.21437/Interspeech.2023-159
Lee, K., & Fanguy, M. (2022). Online exam proctoring technologies: Educational innovation or deterioration? British Journal of Educational Technology, 53(3), 475–490. https://doi.org/10.1111/bjet.13182
Li, P., & Ross, K. (2021). Validity of Transformative Experiences: An Unfolding. Qualitative Inquiry, 27(3–4), 385–396. https://doi.org/10.1177/1077800420918905
Liang, P. P., Zadeh, A., & Morency, L.-P. (2022). Foundations and Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions. http://arxiv.org/abs/2209.03430
Mandasari, K., Laila, N. A., & Adiyono, A. (2025). Implementasi Model Evaluasi-Refleksi Siklik Dalam Peningkatan Kualitas Pembelajaran Di Madrasah Aliyah. JPG: Jurnal Pendidikan Guru, 6(2), 303-317. https://doi.org/10.32832/jpg.v6i2.19929
Modgil, S., Dwivedi, Y. K., Rana, N. P., Gupta, S., & Kamble, S. (2022). Has Covid-19 accelerated opportunities for digital entrepreneurship? An Indian perspective. Technological Forecasting and Social Change, 175. https://doi.org/10.1016/j.techfore.2021.121415
Mokbel, M., Sakr, M., Xiong, L., Züfle, A., Almeida, J., Anderson, T., Aref, W., Andrienko, G., Andrienko, N., Cao, Y., Chawla, S., Cheng, R., Chrysanthis, P., Fei, X., Ghinita, G., Graser, A., Gunopulos, D., Jensen, C. S., Kim, J. S., … Zimányi, E. (2024). Mobility Data Science: Perspectives and Challenges. ACM Transactions on Spatial Algorithms and Systems, 10(2). https://doi.org/10.1145/3652158
Morrow, E., Zidaru, T., Ross, F., Mason, C., Patel, K. D., Ream, M., & Stockley, R. (2023). Artificial intelligence technologies and compassion in healthcare: A systematic scoping review. Frontiers in Psychology, 13, 01–31. https://doi.org/10.3389/fpsyg.2022.971044
Olawade, D. B., Wada, O. Z., Odetayo, A., David-Olawade, A. C., Asaolu, F., & Eberhardt, J. (2024). Enhancing mental health with Artificial Intelligence: Current trends and future prospects. Journal of Medicine, Surgery, and Public Health, 3, 100099. https://doi.org/10.1016/j.glmedi.2024.100099
Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., Mcdonald, S., … Mckenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. In The BMJ (Vol. 372). BMJ Publishing Group. https://doi.org/10.1136/bmj.n160
Park, H. J., Lee, W. B., & Kim, J.-L. (2024). A Study on the Blockchain Acceptance Intention for Improving the Reliability of Student Submission Data and Efficiency of Administrative Processing, such as the College Entrance Screening Department. International Journal of Religion, 5(4), 459–470. https://doi.org/10.61707/ng4z9862
Pathni, R. K. (2023). Artificial Intelligence and the Myth of Objectivity. Journal of Healthcare Management Standards, 3(1), 1–14. https://doi.org/10.4018/jhms.329234
Peters, M. A. (2015). PHILOSOPHY OF EDUCATION IN THE AGE OF DIGITAL REASON. Review of Contemporary Philosophy, 14, 162–181.
Pyzer-Knapp, E. O., Pitera, J. W., Staar, P. W. J., Takeda, S., Laino, T., Sanders, D. P., Sexton, J., Smith, J. R., & Curioni, A. (2022). Accelerating materials discovery using artificial intelligence, high performance computing and robotics. Npj Computational Materials, 8(1), 1–9. https://doi.org/10.1038/s41524-022-00765-z
Roberts, C. V, Elahi, E., & Chandrashekar, A. (2023). CLIME: Completeness-Constrained LIME. 950–258. https://doi.org/10.1145/3543873
Robson, R. C., Pham, B., Hwee, J., Thomas, S. M., Rios, P., Page, M. J., & Tricco, A. C. (2019). Few studies exist examining methods for selecting studies, abstracting data, and appraising quality in a systematic review. In Journal of Clinical Epidemiology (Vol. 106, pp. 121–135). Elsevier USA. https://doi.org/10.1016/j.jclinepi.2018.10.003
Rosmini, H., Ningsih, N., Murni, M., & Adiyono, A. (2024). Transformasi Kepemimpinan Kepala Sekolah pada Era Digital: Strategi Administrasi Pendidikan Berbasis Teknologi di Sekolah Menengah Pertama. Konstruktivisme: Jurnal Pendidikan dan Pembelajaran, 16(1), 165-180. https://doi.org/10.35457/konstruk.v16i1.3451
Smith, R., Wuthrich, V., Johnco, C., & Belcher, J. (2021). Effect of Group Cognitive Behavioural Therapy on Loneliness in a Community Sample of Older Adults: A Secondary Analysis of a Randomized Controlled Trial. Clinical Gerontologist, 44(4), 439–449. https://doi.org/10.1080/07317115.2020.1836105
Smith, S., & Johnson, G. (2023). A systematic review of the barriers, enablers and strategies to embedding translational research within the public hospital system focusing on nursing and allied health professions. PLoS ONE, 18(2 February). https://doi.org/10.1371/journal.pone.0281819
Strielkowski, W., Grebennikova, V., Lisovskiy, A., Rakhimova, G., & Vasileva, T. (2024). AI-driven adaptive learning for sustainable educational transformation. In Sustainable Development. John Wiley and Sons Ltd. https://doi.org/10.1002/sd.322 1
Thieme, A., Hanratty, M., Lyons, M., Palacios, J., Marques, R. F., Morrison, C., Doherty, G., Thieme, A., Marques, R. F., Morrison, C., Hanratty, M., Lyons, M., Palacios, J., & Doherty, G. (2023). Designing Human-centered AI for Mental Health: Developing Clinically Relevant Applications for Online CBT Treatment. ACM Transactions on Computer-Human Interaction, 30(2). https://doi.org/10.1145/3564752
UNESCO. (2023). Annual report 2023. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000389704
Vanhée, L., Andersson, G., Garcia, D., & Sikström, S. (2025). The rise of artificial intelligence for cognitive behavioral therapy: A bibliometric overview. Applied psychology. Health and well-being, 17(2), e70033. https://doi.org/10.1111/aphw.70033
Verma, M., Chanthar, K. M. M. V., & Beg, M. J. (2025). Ethical considerations surrounding the use of AI-interventions in application of mental healthcare. In Chatbots and Mental Healthcare in Psychology and Psychiatry (pp. 193–222). IGI Global. https://doi.org/10.4018/979-8-3693-3112-5.ch009
World Health Organization. (2021). World health statistics 2021: Monitoring health for the SDGs, sustainable development goals. https://www.who.int/data/gho/publications/world-health-statistics
                                            Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Romdani Romdani, Adiyono Adiyono

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
						




